
Recommended Method of Finding the Natural Power Factor

Spencer Perkins

August 28, 2019

Contents

1	Executive Summary	3
2	Introduction	3
3	Calculation Methods	5
4	Analysis	7
5	Results	8
6	Recommendation	10
AĮ	opendix	11

1 Executive Summary

The power factor of a AC system is the ratio of active and apparent power, and indicates the ability of the electrical system to do useful work. Electrical utilities want high power factor to increase asset utilization and deliver more energy. To do so they typically add in capacitors to compensate inductive loads or inductors to compensate capacitive loads.

The natural power factor (NPF) is the power factor that the system would have without any compensation. This is used for planning purposes in the power system, and if incorrect can cause unacceptable performance, equipment overload and additional costs.

There are many different methods of calculating the NPF. This paper concludes that the most consistent year over year method is the PQ Plot with $NPF(P_{avg})$ as it has the lowest standard deviation of 0.0033. This method involves plotting P vs Q_{uncomp} and finding the line of best fit to get Q_{uncomp} as a function of P. The NPF can then be written as a function of P, then the NPF is taken to be $NPF(P_{avg})$. The $NPF(P_{avg})$ also provides the most conservative NPF. The method that gives the NPF that is likely most consistent with the NPF at peak loading the $NPF(P_{max})$. All methods are summarized in figure 8.

The PQ plot methods also have another advantage. The natural power factor is not a single number and changes as the loading changes. Part of this method is deriving a functional relationship between NPF and P, this means that for any P the NPF for can be calculated giving a more precise NPF for a given scenario.

2 Introduction

The purpose of this report is to summarize different options for calculating the natural power factor and objectively determine the best method that gives the most consistent year over year natural power factor at system peak.

Power Triangle

In an AC system both current(\underline{i}) and voltage(\underline{v}) are represented as phasors. Phasors are complex numbers that represent the amplitude and phase angle of a sinusoidal wave. Since power(\underline{S}) is current times voltage ($\underline{S} = \underline{vi}$), then it is also represented in the complex plane. This means there is some power that is on the imaginary axis, this is called 'reactive power(Q)' and is indicated with units of MVAr. There is also some power on the real axis, which is called 'active power(P)' and is indicated with units of MVA. The total power, called the 'apparent power(\underline{S})' is the vector addition of the real and reactive powers $\underline{S} = P + jQ$, where j is the imaginary unit. This relationship can be seen in figure 1.

Figure 1: Power Triangle

The phase difference between voltage and current comes from the type of load being supplied. The load has some impedance(\underline{Z}) which is made up of a resistance(R) and reactance(X), $\underline{Z} = R + jX$. The reactance has some capacitive($X_C = \frac{1}{\omega C}$) and inductive($X_L = \omega L$) components, where ω is the angular frequency ($\omega = 2\pi f$).

$$X = X_L - X_C \tag{1}$$

$$=\omega L - \frac{1}{\omega C} \tag{2}$$

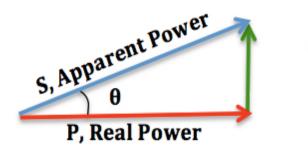
Thus P and Q can be rewritten in terms of the impedance.

$$P = I^2 R \tag{3}$$

$$Q = I^2 X \tag{4}$$

$$=I^2(X_L - X_C) \tag{5}$$

When X > 0 then the total reactance is said to be inductive, and when X < 0 the total reactance is said to be capacitive.


Power Factor (PF)

The power factor (PF) is the ratio of active and apparent power. This ratio indicates the ability of the electrical system to do useful work.

$$PF = \frac{\text{Active Power}}{\text{Apparent Power}} = \frac{P}{S}$$
(6)

Low power factors limit the capacity of an electrical system to deliver energy, and can contribute power quality issues. A good power factor is typically from 0.95 to 1.0 at system peak.

When the total reactance is inductive (X > 0) then the power factor is said to be lagging, and when the total reactance is capacitive (X < 0) the power factor is said to be leading. These can be seen in figures 2 and 3.

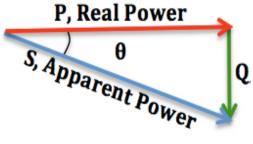


Figure 2: Lagging Power Factor

Figure 3: Leading Power Factor

Natural Power Factor (NPF)

Electrical utilities want to decrease the magnitude of their systems impedance to achieve a good power factor. They do so by providing reactive compensation (X_{comp}) causing the total impedance in their system to become $X_{total} = X_L - X_C + X_{comp}$. Typical systems have a lagging power factor $(X_L - X_C > 0)$ so they provide capacitor compensation meaning that X_{comp} is a negative value effectively reducing the magnitude of the total impedance. The natural power factor (NPF) is the power factor if there were no compensation in place.

$$NPF = \frac{\text{Active Power}}{\text{Uncompensated Apparent Power}}$$
(7)

$$=\frac{P}{S_{uncomp}}\tag{8}$$

$$=\frac{P}{\sqrt{P^2 + Q_{uncomp}^2}}\tag{9}$$

Where

$$Q_{uncomp} = I^2 X_{uncomp} = I^2 (X_{total} - X_{comp})$$
⁽¹⁰⁾

The NPF methods tested all provide a single value for the NPF over a study period that can be used by planners to make decisions about future system needs, capacity upgrade timing and required compensation support.

3 Calculation Methods

There are multiple different methods to calculate the natural power factor (NPF) which are described below. Each method uses 15 minute PI data with both active and reactive power information as well as station capacitor service data. The NPF for each 15 minute interval is calculated using equation 9. The data is taken over span of 4 months in the winter (Nov-Feb), and 4 months in the summer (May-Aug) as the study times to get a single value for the summer and winter NPF using the following methods:

- 1. Average: Take the NPF as the average of all the NPF's for each 15 minute interval over the study time.
- 2. Maximum: Take the NPF corresponding to the single maximum point of the active power.

3. Bin Histogram: Create a histogram of all the NPF over the study time with bin spaces of 0.01. Takes the NPF as the most frequent occurring value. An example histogram is shown in figure 4, in this case the NPF would be 0.94.

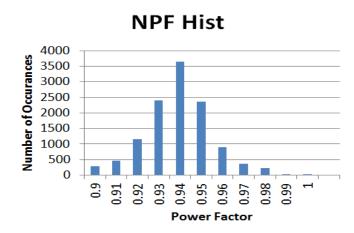


Figure 4: NOR Summer FY2018 NPF Histogram

4. 60% Above: Take the NPF that has at least 60% of the NPF's above it. An example plot is shown in figure 5, in this case the NPF would be 0.98.

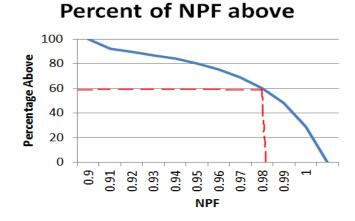


Figure 5: CSQ Winter F2018 % Above Plot

- 5. 20% Data Filter Average: Take the average of the NPF's that have corresponding active power within 20% of the peak active power.
- 6. PQ Plot: Plot P vs Q_{uncomp} , find the line of best fit and get Q_{uncomp} as a function of P, call this $Q_u(P)$. The NPF can then be written as a function of P using equation 9:

$$NPF(P) = \frac{P}{\sqrt{P^2 + Q_u(P)^2}} \tag{11}$$

From here there were 2 methods tested:

- Take the NPF to be $NPF(P_{max})$
- Take the NPF to be $NPF(P_{avg})$

Figure 6 gives an example of a PQ plot. In this case $Q_u(P) = 0.1961P - 19.529$.

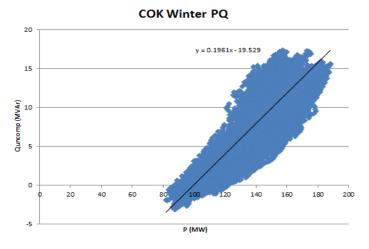


Figure 6: COK Winter F2018 PQ_{uncomp} Plot

4 Analysis

To analyze each method, 8 BC Hydro substations with good PI data and no feeder capacitor compensation were selected at random. Stations with feeder capacitors were not selected as there is no in service data for feeder capacitors, thus no way to accurately determine whether feeder compensation is in or out. The NPF of each of these substations was computed with each method every year for the past 3 years.

The average NPF for each method was computed by taking the average NPF over the 3 years for each substation for both winter and summer. These can be compared to determine how conservative each method is (more conservative meaning a lower NPF) and how much they vary from one another.

To test the consistency of a method the standard deviation was found from the NPF's produced by that method for each substation over the 3 years. For each season (winter and summmer) the average of the standard deviations for each substation was taken to be the seasonal standard deviation for that method. Finally the average of the seasonal standard deviations (winter and summer) was taken to be the final standard deviation of that method. This was done for each method.

Both average and standard deviations of the NPF's for each method are summarized in figure 7. More detailed data can be found in the appendix.

#	Method	Avg NPF	Avg Std. Dev
1	Average	0.969	0.0037
2	Maximum	0.980	0.0045
3	Bin Hist	0.977	0.0060
4	60% above	0.974	0.0039
5	20% filter Avg	0.979	0.0038
6	PQ plot NPF(Pmax)	0.980	0.0041
7	PQ plot NPF(Pavg)	0.973	0.0033

Figure 7: Average standard deviation of each tested NPF method

5 Results

Figure 8 summarizes each method. Confidence levels were selected by considering the methods pros and cons as well as average NPF they produced and associated standard deviation.

#	Method	Description	Pros	Cons	Avg NPF of all	Avg Std Dev of	Confid ence
					tested Stations	those NPF's	in NPF
1	Average	Take the NPF as the average of all the NPF's for each 15 minute interval over the study time.	 Conservative value Easy to calculate Relatively consistent year over year 	 May not give NPF at peak loading 	0.969	0.0037	Mid
2	Maximum	Take the NPF corresponding to the single maximum point of the active power.	 Easy to calculate Gives the NPF at peak loading 	 Considers only a single data point, may be an outlier or bad data Not as consistent year over year 	0.980	0.0045	Low
3	Bin Histogram	Create a histogram of all the NPF over the study time with bin spaces of 0.01. Takes the NPF as the most frequent occurring value. (see figure 4)	 Expresses the power factor that occurs most frequently 	 May not give NPF at peak loading Least consistent year over year Harder to calculate 	0.977	0.0060	Low
4	60% Above	Take the NPF that has at least 60% of the NPF's above it. (see figure 5)	 Conservative value Relatively consistent year over year 	Harder to calculate	0.974	0.0039	High
5	20% filter avg	Take the average of the NPF's that have corresponding active power within 20% of the peak active power.	 Relatively consistent year over year Skews data to get NPF closer to peak loading 	 Harder to calculate If the peak is a large outlier may only use a little amount of data 	0.979	0.0038	Mid
6	PQ plot NPF(Pmax)	Plot P vs Quncomp (Qu) and find the line of best fit to get Qu as a function of P. The NPF can then be written as a function of P, then the NPF is taken to be NPF(Pavg). (see figure 6)	 Gives a NPF very close to the maximum method but more consistent year over year Gives the NPF at peak loading Relatively consistent year over year 	Harder to calculate	0.980	0.0041	High
7	PQ plot NPF(Pavg)	Same as the above method but take NPF to be NPF(Pmax)	 Most consistent method Conservative value 	Harder to calculate	0.973	0.0033	High

Figure 8: Method Summary

6 Recommendation

Based on this analysis the PQ Plot $NPF(P_{max})$ method should be used. It gives a relatively consistent year over year NPF, and gives the NPF at the peak loading which is what is most important.

The PQ plot method also has another advantage. The NPF is not a single number and changes as the loading changes. Part of this method is deriving a functional relationship between NPF and P, this means that for any P the NPF for can be calculated giving a more precise NPF for a given scenario.

The only drawback to this method is that it takes a lot of computation to arrive at the answer. For a less accurate but also less computationally intensive method the average method should be chosen, it also gives a more conservative NPF.

Appendix

Station	Method	F16	NPF F17	F18	Avg NPE	NPF Std Dev	Station	Method	F16	NPF F17	F18
FRC	Average	0.914	0.918		0.911	0.0088	FRC	Average	0.831		0.838
rnu -							rno		0.941		0.966
	Maximum	0.976	0.973		0.973	0.0032		Maximum			
	Bin Hist	0.900	0.900		0.900	0.0000		Bin Hist	0.900		0.900
	60% above	0.910	0.920	0.900	0.910	0.0100		60% above	0.900		0.900
	20% filter Avg	0.967	0.966	0.963	0.966	0.0022		20% filter Avg	0.917	0.922	0.940
	PQ plot NPF(Pmax)	0.978	0.978	0.974	0.977	0.0024		PQ plot NPF(Pmax)	0.943	0.957	0.963
	PQ plot NPF(Pavg)	0.926	0.925		0.920	0.0086		PQ plot NPF(Pavg)	0.838	0.844	0.847
								-			
NOR	Average	0.970	0.968	0.973	0.971	0.0028	NOR	Average	0.947	0.939	0.970
	Maximum	0.966	0.966		0.970	0.0065		Maximum	0.951		0.953
	Bin Hist	0.970	0.980	0.990	0.980	0.0100		Bin Hist	0.940		0.970
	60% above	0.970	0.960	0.970	0.967	0.0058		60% above	0.940	0.940	0.970
	20% filter Avg	0.971	0.974	0.973	0.972	0.0014		20% filter Avg	0.948	0.938	0.960
	PQ plot NPF(Pmax)	0.971	0.975		0.974	0.0021		PQ plot NPF(Pmax)	0.948	0.942	0.956
	PQ plot NPF(Pavg)	0.971	0.970		0.972	0.0028		PQ plot NPF(Pavg)	0.948		0.969
сок	Average	0.998	0.998		0.998	0.0003	COK	Average	0.994	0.996	0.996
	Maximum	1.000	0.997	0.998	0.998	0.0017		Maximum	0.981		0.979
	Bin Hist	0.960	1.000	1.000	0.987	0.0231		Bin Hist	1.000	1.000	1.000
	60% above	1.000	1.000	1.000	1.000	0.0000		60% above	1.000	1.000	1.000
	20% filter Avg	0.997	0.997	0.998	0.997	0.0005		20% filter Avg	0.989	0.991	0.990
	PQ plot NPF(Pmax)	0.999	0.996		0.997	0.0003		PQ plot NPF(Pmax)	0.985		0.986
	PQ plot NPF(Pavg)	0.999	0.999		0.999	0.0004		PQ plot NPF(Pavg)	0.998		0.997
	r opiocrar r (r avg)	0.000	0.000	0.000	0.000	0.0001		r opiotria r (r olig)	0.000	0.001	0.001
DGR	Average	0.962	0.971	0.977	0.970	0.0072	DGR	Average	0.947	0.948	0.954
	Maximum	0.966	0.970	0.974	0.970	0.0040		Maximum	0.937	0.942	0.942
	Bin Hist	1.000	0.970		0.980	0.0173		Bin Hist	0.950	0.950	0.950
	60% above	0.960	0.970		0.967	0.0058		60% above	0.950		0.950
	20% filter Avg	0.964	0.970		0.971	0.0038		20% filter Avg	0.945		0.950
	PQ plot NPF(Pmax)	0.964	0.968		0.971	0.0081		PQ plot NPF(Pmax)	0.944	0.946	0.950
	PQ plot NPF(Pavg)	0.963	0.971	0.978	0.970	0.0075		PQ plot NPF(Pavg)	0.947	0.948	0.954
CSQ	Average	0.981	0.969	0.973	0.974	0.0060	CSQ	Average	0.979	0.976	0.978
	Maximum	0.997	0.998		0.998	0.0006		Maximum	0.996	0.998	0.996
	Bin Hist	1.000	1.000	0.980	0.993	0.0115		Bin Hist	1.000		1.000
	60% above	0.990	0.970		0.980	0.0100		60% above	0.990		0.980
	20% filter Avg	0.985	0.990		0.989	0.0040		20% filter Avg	0.989		0.990
	PQ plot NPF(Pmax)	0.984	0.991	0.996	0.990	0.0060		PQ plot NPF(Pmax)	0.989	0.983	0.992
	PQ plot NPF(Pavg)	0.999	0.996	0.996	0.997	0.0018		PQ plot NPF(Pavg)	0.998	1.000	0.998
PVL	•	0.007	0.000	0.000	0.000	0.0000	PVL	A	0.993	0.994	0.993
PVL	Average	0.997	0.996	0.996	0.996	0.0006	PVL	Average			
	Maximum	0.994	0.994	0.993	0.993	0.0007		Maximum	0.992		0.995
	Bin Hist	1.000	1.000		1.000	0.0000		Bin Hist	0.990		1.000
	60% above	1.000	1.000	1.000	1.000	0.0000		60% above	0.990		0.990
	20% filter Avg	0.995	0.994	0.994	0.995	0.0006		20% filter Avg	0.991	0.995	0.990
	PQ plot NPF(Pmax)	0.995	0.993		0.994	0.0011		PQ plot NPF(Pmax)	0.990		0.99
	PQ plot NPF(Pavg)	0.997	0.996		0.996	0.0007		PQ plot NPF(Pavg)	0.993		0.994
PML	Average	0.995	0.997	0.996	0.996	0.0009	PML	Average	0.993		0.986
	Maximum	0.995	0.998		0.997	0.0015		Maximum	0.995	0.997	0.97
	Bin Hist	1.000	1.000	1.000	1.000	0.0000		Bin Hist	0.990	1.000	1.000
	60% above	1.000	1.000	1.000	1.000	0.0000		60% above	0.990	1.000	0.980
	20% filter Avg	0.994	0.996		0.995	0.0009		20% filter Avg	0.988		0.980
	PQ plot NPF(Pmax)	0.997	0.996		0.995	0.0015		PQ plot NPF(Pmax)	0.990		0.972
	PQ plot NPF(Pavg)	0.997	0.997	0.996	0.997	0.0005		PQ plot NPF(Pavg)	0.994	0.996	0.988
	, general (, ang)	0.001	0.001		0.001	0.0000		, gyneria i (r alig)	0.001	0.000	
KTG	Average	0.996	0.997	0.998	0.997	0.0007	KTG	Average	0.994	0.995	0.995
	Maximum	0.994	0.995	0.995	0.994	0.0008		Maximum	0.999	0.997	0.997
	Bin Hist	1.000	1.000	1.000	1.000	0.0000		Bin Hist	0.990	1.000	1.000
	60% above	1.000	1.000		1.000	0.0000		60% above	0.990		0.990
	20% filter Avg	0.995	0.996		0.996	0.0008		20% filter Avg	0.994	0.996	1.000
	PQ plot NPF(Pmax)	0.995	0.995		0.995	0.0007		PQ plot NPF(Pmax)	0.992		0.99
	PQ plot NPF(Pavg)	0.996	0.997	0.998	0.997	0.0007		PQ plot NPF(Pavg)	0.994	0.995	0.995

Figure 9: Winter NPF Details

#	Method	Avg NPF	Avg Std Dev
1	Average	0.977	0.0034
2	Maximum	0.987	0.0024
3	Bin Hist	0.980	0.0077
4	60% above	0.979	0.0036
5	20% filter Avg	0.985	0.0022
6	PQ plot NPF(Pmax)	0.987	0.0030
7	PQ plot NPF(Pavg)	0.981	0.0029

Figure 11: Winter NPF Analysis Summary

Figure 10: Summer NPF Details

Avg NPF 0.835

0.942 0.900 0.900 0.926

0.954 0.843

0.952 0.948 0.950 0.950 0.949 0.949

0.953 0.995

0.995 0.981 1.000 1.000 0.990 0.986 0.997

0.950 0.940 0.950 0.950 0.947 0.947 0.950

0.978 0.997 1.000 0.983 0.988 0.988 0.988

0.993 0.994 0.993 0.990 0.992 0.991 0.994

0.992 0.988 0.997 0.990 0.988 0.986

0.993

0.995

0.335 0.998 0.997 0.990 0.997 0.992 0.995 NPF Std Dev 0.0036

0.0235 0.0000 0.0000 0.0123 0.0103 0.0042

0.0161 0.0068 0.0173 0.0173

0.0112 0.0071 0.0148

0.0012

0.0012 0.0007 0.0000 0.0000 0.0011 0.0021 0.0005

0.0038 0.0027 0.0000 0.0000 0.0025 0.0034 0.0039

0.0014 0.0013 0.0000 0.0058 0.0022 0.0045

0.0008

0.0004 0.0014 0.0058 0.0000 0.0025 0.0007 0.0004

0.0053 0.0142 0.0058 0.0100 0.0082 0.0127

0.0045

0.0005

0.0005 0.0015 0.0058 0.0000 0.0029 0.0007 0.0007

#	Method	Avg NPF	Avg Std Dev
1	Average	0.961	0.0040
2	Maximum	0.973	0.0066
3	Bin Hist	0.973	0.0043
4	60% above	0.969	0.0041
5	20% filter Avg	0.972	0.0054
6	PQ plot NPF(Pmax)	0.974	0.0052
7	PQ plot NPF(Pavg)	0.965	0.0037

Figure 12: Summer NPF Analysis Summary